Package: bsts 0.9.10
bsts: Bayesian Structural Time Series
Time series regression using dynamic linear models fit using MCMC. See Scott and Varian (2014) <doi:10.1504/IJMMNO.2014.059942>, among many other sources.
Authors:
bsts_0.9.10.tar.gz
bsts_0.9.10.zip(r-4.5)bsts_0.9.10.zip(r-4.4)bsts_0.9.10.zip(r-4.3)
bsts_0.9.10.tgz(r-4.4-x86_64)bsts_0.9.10.tgz(r-4.4-arm64)bsts_0.9.10.tgz(r-4.3-x86_64)bsts_0.9.10.tgz(r-4.3-arm64)
bsts_0.9.10.tar.gz(r-4.5-noble)bsts_0.9.10.tar.gz(r-4.4-noble)
bsts.pdf |bsts.html✨
bsts/json (API)
# Install 'bsts' in R: |
install.packages('bsts', repos = c('https://steve-the-bayesian.r-universe.dev', 'https://cloud.r-project.org')) |
- gdp - Gross Domestic Product for 57 Countries
- goog - Google stock price
- initial.claims - Initial Claims Data
- new.home.sales - New home sales and Google trends
- rsxfs - Retail sales, excluding food services
- shark - Shark Attacks in Florida.
- turkish - Turkish Electricity Usage
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 10 months agofrom:f4573bfa3c. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | NOTE | Nov 02 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 02 2024 |
R-4.4-win-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-aarch64 | OK | Nov 02 2024 |
R-4.3-win-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-aarch64 | OK | Nov 02 2024 |
Exports:AcfDistAddArAddAutoArAddDynamicRegressionAddGeneralizedLocalLinearTrendAddHierarchicalRegressionHolidayAddLocalLevelAddLocalLinearTrendAddMonthlyAnnualCycleAddRandomWalkHolidayAddRegressionHolidayAddSeasonalAddSemilocalLinearTrendAddSharedLocalLevelAddStaticInterceptAddStudentLocalLinearTrendAddTrigAggregateTimeSeriesAggregateWeeksToMonthsbstsbsts.mixedbsts.prediction.errorsBstsOptionsCompareBstsModelsDateRangeDateRangeHolidayDateToPOSIXDayPlotdirmDirmModelOptionsDynamicRegressionArOptionsDynamicRegressionHierarchicalRandomWalkOptionsDynamicRegressionRandomWalkOptionsEstimateTimeScaleExtendTimeFixedDateHolidayGeometricSequenceGetFractionOfDaysInInitialMonthGetFractionOfDaysInInitialQuarterHarveyCumulatorHasDuplicateTimestampsIsRegularLastDayInMonthLastWeekdayInMonthHolidayLongToWideMATCH.NumericTimestampsMatchWeekToMonthMaxWindowWidthMaxWindowWidth.DateRangeHolidayMaxWindowWidth.defaultmbstsMonthDistanceMonthPlotnamed.holidaysNamedHolidayNoDuplicatesNoGapsNthWeekdayInMonthHolidayplot.bstsplot.bsts.mixedplot.bsts.predictionplot.mbstsplot.mbsts.predictionPlotBstsCoefficientsPlotBstsComponentsPlotBstsForecastDistributionPlotBstsMixedComponentsPlotBstsMixedStatePlotBstsPredictionErrorsPlotBstsPredictorsPlotBstsResidualsPlotBstsSizePlotBstsStatePlotDynamicRegressionPlotHolidayPlotMbstsSeriesMeansPlotSeasonalEffectpredict.bstspredict.mbstsqqdistQuarterRegularizeTimestampsRegularizeTimestamps.DateRegularizeTimestamps.defaultRegularizeTimestamps.numericRegularizeTimestamps.POSIXtresiduals.bstsShortenSimulateFakeMixedFrequencyDataSpikeSlabArPriorStateSizesSuggestBurnsummary.bstsweekday.namesWeekEndsMonthWeekEndsQuarterWideToLongYearMonToPOSIXYearPlot